Lazy Release Persistency

Mahesh Dananjaya, Vasilis Gavrielatos, *Arpit Joshi, Vijay Nagarajan

University of Edinburgh, Intel*

S%\SWE'P“’Q THE UNIVERSITY of EDINBURGH E PS RC
- informatics -
I

dSkLl

Outline

e Release Persistency (RP)

o Strengthens existing language-level persistency model

o Strong enough to enable recovery of log-free data structures (LFDs)
e Lazy Release Persistency (LRP)

o Microarchitectural mechanism to efficiently enforce RP

N1V
PR
':z? 2\ THE UNIVERSITY of EDINBURGH

- informatics

Persistent Memory (PM)

Non-volatile memory (NVM)

e Fast, byte-addressable persistent storage
e Promises cheap program recovery on a crash

e Program recovery requires crash consistency

Persistent Memory (PM)

__

__

Persistent Memory (PM)

1. Create Node

__

__

Persistent Memory (PM)

1. Create Node

2. Update Pointer Cache

__

__

\". THE UNIVERSITY of EDINBURGH

3

- informatics

Persistent Memory (PM)

1. Create Node

2. Update Pointer Cache

__

__

3. Update Base Pointer

&)~ THE UNIVERSITY of EDINBURGH

informatics

Persistent Memory (PM)

1. Create Node

2. Update Pointer Cache

__

__

3. Update Base Pointer

&)~ THE UNIVERSITY of EDINBURGH

informatics

Persistent Memory (PM)

1. Create Node

2. Update Pointer

3. Update Base Pointer

\". THE UNIVERSITY of EDINBURGH

3

- informatics

Persistent Memory (PM)

1. Create Node

2. Update Pointer Cache

__

__

3. Update Base Pointer

&)~ THE UNIVERSITY of EDINBURGH

informatics

10

What Primitives for Crash Consistency?

Tx Begin
Node
Pointer
Base Pointer

Tx End /

[] \iZ///’

Failure Atomicity

SFR [Gogte et al]
Atlas [Chakrabarti et al]

\". THE UNIVERSITY of EDINBURGH

)- informatics

Node

Pointer

Barrier

Base Pointer

Persist Ordering

ARP [Kolli et all

11

What Primitives for Crash Consistency?

Tx Begin
Node
Pointer
Base Pointer

Tx End

)

e /

Failure Atomicity

Node

Pointer

Barrier

Base Pointer

Persist Ordering

Goal: Sweet-spot between programmability and performance

12

What Primitives for Crash Consistency?

&)~ THE UNIVERSITY of EDINBURGH

‘¥ informatics

/Tx Begin)
Node
Pointer
Base Pointer
Tx End
J

o

Failure Atomicity

13

What Primitives for Crash Consistency?

&)~ THE UNIVERSITY of EDINBURGH

‘¥ informatics

/Tx Begin)
Node
Pointer
Base Pointer
Tx End
J

o

Failure Atomicity

,\E Programmability

14

What Primitives for Crash Consistency?

&)~ THE UNIVERSITY of EDINBURGH

‘¥ informatics

/Tx Begin)
Node
Pointer
Base Pointer
Tx End
J

o

Failure Atomicity

_ & Programmability

= Performance

¥

15

What Primitives for Crash Consistency?

Node

Pointer

Barrier

Base Pointer

@l Persist ordering

&)~ THE UNIVERSITY of EDINBURGH

‘¥ informatics

16

What Primitives for Crash Consistency?

Node

= Programmability

Pointer -\r_)

Barrier

Base Pointer

@l Persist ordering

&)~ THE UNIVERSITY of EDINBURGH

‘¥ informatics

17

What Primitives for Crash Consistency?

Node

= Programmability

Pointer -\r_)

Barrier

Base Pointer

E Performance

@l Persist ordering

&)~ THE UNIVERSITY of EDINBURGH

‘¥ informatics

18

What Primitives for Crash Consistency?

Node

[

Pointer .\th Programmability

Barrier

Base Pointer

E Performance

&, Persist ordering ARP one-sided barriers
[Kolli et al.]

&)~ THE UNIVERSITY of EDINBURGH

informatics

Acquire-Release Persistency (ARP)

W,: More writes B, =
............................ W4: B2 =
- By=

Ve
Za\ THE UNIVERSITYngDlNBURGH

4 informatics

20

Acquire-Release Persistency (ARP)

One-sided barrier

Rel: (flag =1) W1 — W4

'; (but not W1 — W2
W,: ' More writes Or W3- W4)

\". THE UNIVERSITY of EDINBURGH

~)- informatics

21

Our View: Atomicity vs Ordering

Atomicity is programmable but ordering important too
(for log-free data structures, LFDs)

\". THE UNIVERSITY of EDINBURGH

&y informatics

Our View: Atomicity vs Ordering

-

p
Atomicity is programmable but ordering important too
(for log-free data structures, LFDs)

o
-

LFDs are important use-case for persistent memory

[Izraelevitz ‘17, David ‘18, Belloche ‘18]

-

\". THE UNIVERSITY of EDINBURGH

&y informatics

Our View: Atomicity vs Ordering

4)
Atomicity is programmable but ordering important too
(for log-free data structures, LFDs)

- J
. ™
LFDs are important use-case for persistent memory
[Izraelevitz ‘17, David ‘18, Belloche ‘18]

N J

N
{ But ARP is not strong enough for enabling recovery of LFDs!
J

\". THE UNIVERSITY of EDINBURGH

&3 informatics

24

Multithreaded Log-free Linked List: Thread 1

T Key

&)~ THE UNIVERSITY of EDINBURGH

informatics

25

Multithreaded Log-free Linked List: Thread 1

step 1:

T

5
’:z? 2\ THE UNIVERSITY of EDINBURGH

¢~): informatics

step 2:

*CAS : Compare-and-swap is a read-modify-write (RMW) instruction.

26

Multithreaded Log-free Linked List: Thread 1

step 1: step 2:

T

ONLVE,
’:z? 7 \~. THE UNIVERSITY of EDINBURGH
o

ey informatics 27

Multithreaded Log-free Linked List: Thread 1

step 1:

T

\". THE UNIVERSITY of EDINBURGH

ey informatics

step 2:

W, — Rel

28

Multithreaded Log-free Linked List: Thread 2

&)~ THE UNIVERSITY of EDINBURGH

informatics

29

Multithreaded Log-free Linked List: Thread 2

step 3: step 4. w
1
-—>[IS ff.'..f.'f.'..'.ff_.'..[. :
______ o

J’,\ THE UNIVERSITY of EDINBURGH

- informatics %0

Multithreaded Log-free Linked List: Thread 2

step 3 (Thread 2): step 4 (Thread 2):

-—%m]—-

31

Multithreaded Log-free Linked List: Thread 2

step 3 (Thread 2): step 4 (Thread 2):

J’,\ THE UNIVERSITY of EDINBURGH

- informatics ¥

Persistent Orderings for Recovery

W,: More writes _ B,Key=
R W, B,.Values =
B,.Next =

THE UNIVERSITY of EDINBURGH

informatics

33

Persistent Orderings for Recovery

W,: More writes _ B,Key=
R W, B,.Values =
B,.Next =

\. THE UNIVERSITY of EDINBURGH W — Rel—- W

~)- informatics 1 4

Acquire-Release Persistency (ARP) is not strong enough!

A Key=

1+ A,Values =

w

: : B iE = 5
RN w,: B,.Values =
~ B,.Next=

35

Acquire-Release Persistency (ARP) is not strong enough!

CAKey=
W1=§ A, Values = |
P | ANext= 3

@ fuII persist barrler

Rel: CAS (N,.Next) \ Acq: (N,.Next)
@full persist barrler

szé More writes P B,.Key =
B,.Next =

THE UNIVERSITY of EDINBURGH

- informatics

W4:§ B,.Values =

36

Acquire-Release Persistency (ARP) is not strong enough!

A Key=

W,: A, .Values = | ;
A Next= W35§ More writes

Y

@ full persist barrler

Rel: CAS (N,.Next) \ Acq: (N,.Next)
@full persist barrler

P’ THE UNIVERSITY of EDINBURGH

- informatics

37

. THE UNIVERSITY of EDINBURGH

)- informatics

Release Persistency

A, Key = |
W A, .Values =

Rel: CAS (N, .Next) 2

Acq: (N,.Next)

W,: More writes hb | B. Key =
] :] 2’

T 4 W4. Bz_va|ue3:

BZ.Next =

hbg A, Next = W3:§ More writes

38

Release Persistency

A Key=

W A, Values = | |
hb; A, Next = W3:§ More writes

hb
Rel: CAS (N, .Next) —2
1 o — Acq: (N,.Next)

W,: More writes p \ hb |

| | Dpfey=
L - W4: Bz_VaIueS =
B,.Next =

. THE UNIVERSITY of EDINBURGH

)- informatics

Release Persistency

A Key=

Wi A Values = 5 :
hbé A,.Next = W3:§ More writes

|

Rel: CAS (N,.Next)
s:

Acq: (N,.Next)

Wzié More writes p \

hb : =
| | BZ.Key = g
SR ’ W,: B,-Values =
B,.Next =

THE UNIVERSITY of EDINBURGH W — Rel—- W

- informatics ! !

Release Persistency

Persist ordering mirrors consistency happens-before ordering

(sufficient for LFD recoverability [Izraelevitz and Scott '16])

W2 More writes p \ \hb B,Key=
NN W4: Bz.ValueS —
- B,.Next= |
S e s W Rl w |
- informatics ! 4 “

£ One-sided

& LFDs

Release Persistency

AKey=
Wi A Values=

p\

Rel: CAS (N .Next)
§

Acq: (N,.Next)

W,: More writes D \ hb B, Key - |
R W4: BZ_Va|ueS _
B,.Next = :
THE UNIVERSITY of EDINBURGH W Rl bW |
- informatics 1 4

hbé A, Next= ¥ More writes

42

How to Enforce RP Efficiently?

Requirements
o W,—>Rel->W,
o But the implementation needs to be buffered

(Suboptimal for W, to persist when the Rel performs)

43

How to Enforce RP Efficiently?

Requirements
o W,—>Rel->W,
o But the implementation needs to be buffered

(Suboptimal for W, to persist when the Rel performs)

44

Lazy Release Consistency (LRC)

On a release
o Write to the local cache (no need to propagate writes before the release)
On an acquire

o Find matching release and write-back dirty blocks in the releasing processor

45

Lazy Release Consistency (LRC)

On a release
o Write to the local cache (no need to propagate writes before the release)
On an acquire

o Find matching release and write-back dirty blocks in the releasing processor

Propagate data lazily to enforce RC

46

Lazy Release Persistency (LRP)

On a release
o Write to the local cache (no need to persist writes before the release)
On an acquire

o Find matching release and persist dirty blocks in the releasing processor

47

Lazy Release Persistency (LRP)

On a release
o Write to the local cache (no need to persist writes before the release)
On an acquire

o Find matching release and persist dirty blocks in the releasing processor

Persist data lazily to enforce RP

48

Evaluation

Benchmarks

e SynchroBench LFD suite from [Gramoli ‘15]

Comparison points.
e Strict Barrier (SB)
e Buffered two-sided Barrier (BB) [Joshi “15]

Simulation infrastructure

PRIME simulator

Processor: 64-core, 2.5 GHz, x86-64 (TSO)
Caches: L1 (32K), LLC-banked (1MB per bank)
Coherence: Directory-based MESI
Interconnection: 2D-Mesh network

Memory : PCM-NVRAM

THE UNIVERSITY of EDINBURGH

informatics

49

LRP vs SB

e Upto 71% Improvement
e Average of 52%

HE UNIVERSITY of EDINBURGH

nformatics

Average Execution Time Normalized to NO-Persistency

Execution Time

i sB BB ' LRP

1.75

15 - - -
12 '
) I I 7 7
05 _— : | ,

linkedlist hashmap bstree skiplist queue

o
-

-

(&3]

1%

50

LRP vs SB

e Upto 71% Improvement
e Average of 52%

LRP vs BB [Joshi ‘15]

e Upto 44% Improvement
e Average of 33%

HE UNIVERSITY of EDINBURGH

nformatics

Average Execution Time Normalized to NO-Persistency

Execution Time

SB
175
15
125
114%
1
0.75
05
linkedlist hashmap

BB

bstree

LRP

skiplist

44%

queue

51

Execution Time

LRP vs SB SB BB LRP
e Upto 71% Improvement g
e Average of 52% ‘§ 1.75
&
o)
LRP vs BB [Joshi ‘15] = 1S
e Upto 44% Improvement % i
e Average of 33% E
=
LRP over NO-Persistency S
e Only upto 8% overhead g 0P
% 05
< linkedlist hashmap bstree skiplist queue

HE UNIVERSITY of EDINBURGH

nformatics

Summary

Crash consistency requires persistency primitives: Ordering or Atomicity?
Languages should support atomicity but also ordering!

Why? Log-free data structures can recover without needing atomicity
State-of-the-art language primitive for ordering ARP is not strong enough for LFDs

Contribution
e Release Persistency a language-level persistency model
e |Lazy release persistency (LRP) its microarchitectural implementation
e LRP shows 14%-44% improvement over 5 commonly used LFDs.

THE UNIVERSITY of EDINBURGH

informatics

53

Backup Slides

54

Execution Time

LRP vs SB SB BB LRP
e Upto 71% Improvement g
e Average of 52% 2 175
7] 1%
@
o)
LRP vs BB [Joshi ‘15] s
e Upto 44% Improvement % -
e Average of 33% E -
S \4
& 1
LRP over NO-Persistency S
e Only upto 8% overhead 5 075
E 05
< linkedlist hashmap bstree skiplist queue

HE UNIVERSITY of EDINBURGH

nformatics

Execution Time

LRP vs SB SB BB LRP
e Upto 71% Improvement g
e Average of 52% ‘§ 1.75
&
g
LRP vs BB [Joshi ‘15] 5 0
e Upto 44% Improvement % i 44%
e Average of 33% E
= 114%
& 1
LRP over NO-Persistency S
e Only upto 8% overhead g 0P
E 05
< linkedlist hashmap bstree skiplist queue

HE UNIVERSITY of EDINBURGH

nformatics

LRP vs BB

~41% improvement in the
critical path write-backs.

% of write-backs in the critical path of execution

100%

Writebacks

@ BB M LRP

75% -

50%

25%

0%

linkedlist hashmap

bstree

skiplist

queue

57

LRP vs BB

24%-68% Improvement
Average 52%

Average Execution Time Normalized to NO-Persistency

Uncached Mode

25

15

—

05

linkedlist

W sB

hashmap

BB W LRP

bstree

skiplist

queue

58

LFD Recovery Guarantees

LRP
Null Recovery

_ Buffered Durable Linearizability (BDL)
BDL a_nd DL require
real time ordering Durable Linearizability (DL)

Detectable Execution (DE)

}

Stronger
Guarantees

59

LFD Recovery Guarantees

LRP
Null Recovery]

_ Buffered Durable Linearizability (BDL)
BDL a_nd DL require
real time ordering Durable Linearizability (DL)

Detectable Execution (DE)

Stronger
Guarantees

@ LRP’s null recovery is easy to be extended into stronger guarantees
= without real time ordering

60

One-Sided Release Barrier

Full Barrier more epochs One-Sided
Epoch ID wr, | Epoch ID | reliwrg
: [A)
. A : : . | ;
%o :] ©o !
5 Lazy
e, e, Nritebacks
e No coalescing and reordering across barriers e Coalescing and reordering across barriers
e Flushing data eagerly (all previous epochs) e Flushing data lazily

61

Buffered Epoch Persistency

Buffered Epoch Persistency (BEP):

Rule 2: writes persist in their epoch order.

Persist Barriers have strong semantics:
> No reordering across barriers
> Persistency overhead is significant!

Implementation artifacts:

> (Cache-line eviction/writeback conflicts
> Writing to the same cacheline conflicts

Eagerly flushing cache-lines in the critical path

............................. Epoch
e
0 WrO
| o
WrM
........................... obarrier
Wro
| €
WrN
ei-1
pbarrier
E :Z Wro
| e
[|
Persist conflicts wr,

Release Persistency

Epoch Epoch

B e R Epoch
Wr | rel: wry Wr,
wr, . . .
........................... Full pbarrier release pbarrier
reI:wr1’0 :
B] e, i e,
wr, wr,
...................... B EP RP
o Al) e (AT BT)
*RP avoids EOP conflicts C oL | [B]) e, |]
- Lazy-writebacks © Coalesce (no-conflicts) 63

rel: CL0 0 Epoch Lazy-region > Coalescing
: ' CL,,. | > Lazy Evictions
: € ! — > Lazy Writebacks
CLO,m | . ; : ;
T eease b | CL, |
................................. | n !
rel: CL1’0 5 | |
e - o [en)
CL1,n i i i
i release pbarrier reorder N rel: CLO,O ,/
__________________________ \“““““'_‘_‘_‘::_-_-_-_-:::__ release pbarrier
rel: CL, rel: CL,
C'L T release pbarrier
ij rel: CL,

[*LRP one-sided barriers aggressively reorder writes, persisting stores lazily 64]

Hardware Extensions

... e Tag o
Core (Epoch Count) . .
((SR : b) Cache-line metadata
~ :
Cache Controller Release ;
CPending—Persistsj . Epoch Table min-epoch Address
e — ¥ = X
PersistEngine L1-Cache = =
- : P 9 J
L controlier c) Release Epoch Table (RET)
(Banked) LLC (Banked)
- - .¥ --------- | T
C Interconnection Network)
p ! N ! ~ - (:)ry ~ rm——————
LLC Memory . ?
, Controllers l (Controller—l (COHU‘OHQI‘-N LRP EXtenSIOnS
5 ‘& A S E————————

a) Overall Architetcure

\ [eooai}
_Epoch | | Execution,
. - - e

00 Write (A)
00 Write(X)

01 Release (F1)

01 Write (B)

01 Write (Y)

02 Release (F2)
02 Write(Z)

] Only-Written
i I Released
i [] Release Bit

..........................

Release Example

min-epoch Cache

00 B

01 Y Z

01 F1

00 X

02 E2
release-epoch | Address
01 CL;
02 CL:

Release Epoch Table

One-Sided Acquire Barrier

Full Barrier One-Sided Barrier
EpochID ¢ Wioo | Epoch ID
[a
® :] o
acq:wr, | :
full persist barrier :>
Wr1,0
B
e, [B] .
WI’1,n
e No coalescing and reordering across barriers e Coalescing and reordering across barriers
e Flushing data eagerly (all previous epochs) ' e Flushing data lazily

67

One-Sided Acquire Barrier

Acquire can be enforced very easily than the Release barriers.

If a read is annotated with an Acquire, no additional action is required (can easily be
enforced with the min epoch Id mentioned in the Release).

If a RMW is annotated with Acquire, write inside RMW is persisted first.

Regular Write can never be annotated with acquire.

68

All Cases Handled

Wr — Wr : Write after write is no issue.

Rel — Wr : Write after release can be coalesced. unlimitedly.

Wr — Rel . Release after write can be coalesces only if min epoch id is equal to rel
epoch id -1.

Rel — Rel : Release after release to a cacheline can be coalesced only if they are
consecutive releases (epoch id+1). RET table is used, but can be optimized
with/without the RET table as well.

Different consistency guarantees: RC-SC or RC-PC.

69

LRP One-Sided Release Barrier

[T Key Points
EpochID | [rel'wr "
0,0
A @ Release barrier is flagged using a bit
2 | . :
wr, @ Cache-lines store only min epoch Id

@ “Pending-persist’ counter to track write-backs

@ Persist engine to enforce the RC semantics

\". THE UNIVERSITY of EDINBURGH

C; informqﬁcs *min epoch Id: First epoch that writes the cache-line. 70

Content of memory after a crash needs to be consistent

TO TN
W,: X—1
W, Y—1
R:Y <1
Ry:X«0

......................

Inconsistent!!

THE UNIVERSITY of EDINBURGH

informatics

Crash Consistency

Failure-atomicity
(atomic durability)

Consistent

Transaction + Logging

Ordering

[W, Y—1

R:Y —1

[Pe.rS|st Barriers] RZ: X 1

Consistent

clwb + sfence

71

Crash Consistency

e Content of memory after a crash needs to be consistent

Failure-atomicity Ordering
(atomic durability)

..

Should language expose ordering? or atomicity?

\tR1:Y<—1 : ; / \tR1:Y<—1 ; al \tR1:Y<—1
RyX«0 : [Atf)mic regions] RyX«1 - [Pe.r5|stBarr|ers] Ry X 1

. . 0
..

Inconsistent!! Consistent Consistent

Transaction + Logging clwb + sfence
THE UNIVERSITY of EDINBURGH

informatics

72

