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Outline

● Release Persistency (RP)

○ Strengthens existing language-level persistency model 

○ Strong enough to enable recovery of log-free data structures (LFDs)

● Lazy Release Persistency (LRP)

○ Microarchitectural mechanism to efficiently enforce RP 
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Persistent Memory (PM)

Non-volatile memory (NVM)

● Fast, byte-addressable persistent storage

● Promises cheap program recovery on a crash

● Program recovery requires crash consistency
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Persistent Memory (PM)
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What Primitives for Crash Consistency?
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Goal: Sweet-spot between programmability and performance
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What Primitives for Crash Consistency?
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Persist ordering
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ARP one-sided barriers 
[Kolli et al.]



Acquire-Release Persistency (ARP)
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Acquire-Release Persistency (ARP)
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W1 → W4

(but not W1 → W2
Or        W3 → W4)

One-sided barrier



Our View: Atomicity vs Ordering

Atomicity is programmable but ordering important too
(for log-free data structures, LFDs)
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LFDs are important use-case for persistent memory
[Izraelevitz ‘17, David ‘18, Belloche ‘18]



Our View: Atomicity vs Ordering

Atomicity is programmable but ordering important too
(for log-free data structures, LFDs)
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 But ARP is not strong enough for enabling recovery of LFDs!

LFDs are important use-case for persistent memory
[Izraelevitz ‘17, David ‘18, Belloche ‘18]
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Multithreaded Log-free Linked List: Thread 1
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Multithreaded Log-free Linked List: Thread 2
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Multithreaded Log-free Linked List: Thread 2
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Persistent Orderings for Recovery
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Acquire-Release Persistency (ARP) is not strong enough!
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More writesW2:
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Full barriers annul the performance benefits of ARP!



Release Persistency
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Release Persistency
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Persist ordering mirrors consistency happens-before ordering

(sufficient for LFD recoverability [Izraelevitz and Scott ’16])



Release Persistency
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One-sided

  LFDs



How to Enforce RP Efficiently?

● Requirements

○  W1 → Rel → W4 

○ But the implementation needs to be buffered                                                  

(Suboptimal for W1 to persist when the Rel performs)
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These requirements match a 30-year old protocol for enforcing RC lazily!



Lazy Release Consistency (LRC)
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○ Write to the local cache (no need to propagate writes before the release)

● On an acquire

○ Find matching release and write-back dirty blocks in the releasing processor



Lazy Release Consistency (LRC)
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● On a release 

○ Write to the local cache (no need to propagate writes before the release)

● On an acquire

○ Find matching release and write-back dirty blocks in the releasing processor

Propagate data lazily to enforce RC



Lazy Release Persistency (LRP)
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● On a release 

○ Write to the local cache (no need to persist writes before the release)

● On an acquire

○ Find matching release and persist dirty blocks in the releasing processor



Lazy Release Persistency  (LRP)
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● On a release 

○ Write to the local cache (no need to persist writes before the release)

● On an acquire

○ Find matching release and persist dirty blocks in the releasing processor

Persist  data lazily to enforce RP



Evaluation

Benchmarks

● SynchroBench LFD suite from [Gramoli ‘15]

Comparison points. 
● Strict Barrier (SB)
● Buffered two-sided Barrier (BB) [Joshi ‘15]

Simulation infrastructure

● PRiME simulator
● Processor: 64-core, 2.5 GHz, x86-64 (TSO)
● Caches: L1 (32K), LLC-banked (1MB per bank)
● Coherence: Directory-based MESI
● Interconnection: 2D-Mesh network
● Memory : PCM-NVRAM 
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Execution Time
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Execution Time
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● Upto 71% Improvement
● Average of 52%

LRP over NO-Persistency

● Only upto 8% overhead
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Summary

● Crash consistency requires persistency primitives: Ordering or Atomicity?
● Languages should support atomicity but also ordering!
● Why? Log-free data structures can recover without needing atomicity
● State-of-the-art language primitive for ordering ARP is not strong enough for LFDs

Contribution
● Release Persistency  a language-level persistency model
● Lazy release persistency (LRP) its microarchitectural implementation
● LRP shows 14%-44% improvement over 5 commonly used LFDs.
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Backup Slides
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Writebacks 

LRP vs BB

● ~41% improvement in the 
critical path write-backs.
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Uncached Mode
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LRP vs BB

● 24%-68% Improvement
● Average 52%



LFD Recovery Guarantees

Null Recovery

Buffered Durable Linearizability (BDL)

Durable Linearizability (DL)

Detectable Execution (DE) Stronger 
Guarantees

LRP

59

BDL and DL require 
real time ordering



LFD Recovery Guarantees
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LRP’s null recovery is easy to be extended into stronger guarantees 
without real time ordering

BDL and DL require 
real time ordering



Epoch ID
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● Flushing data lazily

One-Sided 
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more epochs

Lazy 
writebacks



Buffered Epoch Persistency (BEP):
Rule 1: writes from different epochs can be buffered.
Rule 2: writes persist in their epoch order.

Persist Barriers have strong semantics:
➢ No reordering across barriers
➢ Persistency overhead is significant!

Implementation artifacts:

➢ Cache-line eviction/writeback conflicts
➢ Writing to the same cacheline conflicts

Buffered Epoch Persistency
Epoch

e0

wr0

wrM
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wrN

pbarrier
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wr0

wrP

pbarrier

Persist conflicts
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Eagerly flushing cache-lines in the critical path



Lazy-writebacks
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Release Persistency
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*RP avoids EOP conflicts
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LRP-Examples
Epoch
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➢ Coalescing
➢ Lazy Evictions
➢ Lazy Writebacks

Lazy-region

*LRP one-sided barriers aggressively reorder writes, persisting stores lazily 64



Hardware Extensions
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Release Example
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Epoch ID
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● Coalescing and reordering across barriers
● Flushing data lazily

One-Sided Barrier
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One-Sided Acquire Barrier



One-Sided Acquire Barrier

● Acquire can be enforced very easily than the Release barriers.
● If a read is annotated with an Acquire, no additional action is required (can easily be 

enforced with the min epoch Id mentioned in the Release).
● If a RMW is annotated with Acquire, write inside RMW is persisted first.
● Regular Write can never be annotated with acquire. 
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All Cases Handled

● Wr → Wr  : Write after write is no issue.
● Rel → Wr : Write after release can be coalesced. unlimitedly.
● Wr → Rel :  Release after write can be coalesces only if min epoch id is equal to rel 

epoch id -1.
● Rel → Rel : Release after release to a cacheline can be coalesced only if they are 

consecutive releases (epoch id+1). RET table is used, but can be optimized 
with/without the RET table as well.

● Different consistency guarantees: RC-SC or RC-PC.
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B

Epoch ID

e1

rel: wr0,0

wr0,m

e2

rel: wr1,0

wr1,n

one-sided barrier

LRP One-Sided Release Barrier

*min epoch Id: First epoch that writes the cache-line. 70

1

● Release barrier is flagged using a bit1

Key Points

● Cache-lines store only min epoch Id2

2 ● “Pending-persist” counter to track write-backs3

3

4
● Persist engine to enforce the RC semantics4



Crash Consistency

● Content of memory after a crash needs to be consistent

W1: X→1

W2: Y→1

R1: Y ← 1

R2: X ← 0

T0 TN

Inconsistent!! Consistent

Atomic regions

W1: X→1

W2: Y→1

R1: Y ← 1

R2: X ← 1

T0 TN

Failure-atomicity
(atomic durability)

Consistent

W1: X→1

W2: Y→1

R1: Y ← 1

R2: X ← 1

T0 TN

Ordering

Persist Barriers

Transaction + Logging clwb + sfence
71



Crash Consistency

● Content of memory after a crash needs to be consistent

W1: X→1

W2: Y→1

R1: Y ← 1

R2: X ← 0

T0 TN

Inconsistent!! Consistent

Atomic regions

W1: X→1

W2: Y→1

R1: Y ← 1

R2: X ← 1

T0 TN

Failure-atomicity
(atomic durability)

Consistent

W1: X→1

W2: Y→1

R1: Y ← 1

R2: X ← 1

T0 TN

Ordering

Persist Barriers

Transaction + Logging clwb + sfence
72

Should language expose ordering? or atomicity?


