
Lazy Release Persistency
Mahesh Dananjaya, Vasilis Gavrielatos, *Arpit Joshi, Vijay Nagarajan

University of Edinburgh, Intel*

Outline

● Release Persistency (RP)

○ Strengthens existing language-level persistency model

○ Strong enough to enable recovery of log-free data structures (LFDs)

● Lazy Release Persistency (LRP)

○ Microarchitectural mechanism to efficiently enforce RP

2

Persistent Memory (PM)

Non-volatile memory (NVM)

● Fast, byte-addressable persistent storage

● Promises cheap program recovery on a crash

● Program recovery requires crash consistency

Persistent Memory (PM)

4

Cache

NVM

N2N1

N1 N2

Persistent Memory (PM)

5

Cache

N2

A1

1. Create Node
N1

N1 N2

NVM

Persistent Memory (PM)

6

1. Create Node

2. Update Pointer

N1 N2

A1

N1 N2

Cache

NVM

Persistent Memory (PM)

7

1. Create Node

2. Update Pointer

3. Update Base Pointer

N1 N2

A1

N1 N2

Cache

NVM

Persistent Memory (PM)

8

1. Create Node

2. Update Pointer

3. Update Base Pointer

N1 N2

A1

N1 N2

Cache

NVM

Persistent Memory (PM)

9

1. Create Node

2. Update Pointer

3. Update Base Pointer

N1 N2

A1

N1 N2

Cache

NVM

Persistent Memory (PM)

10

1. Create Node

2. Update Pointer

3. Update Base Pointer

Volatile data is lost

N1 N2

Cache

NVM

What Primitives for Crash Consistency?

11

Tx Begin
 Node
 Pointer
 Base Pointer
Tx End

Failure Atomicity

 Node

 Pointer

 Barrier

 Base Pointer

Persist Ordering

SFR [Gogte et al]

Atlas [Chakrabarti et al]

ARP [Kolli et al]

What Primitives for Crash Consistency?

12

Tx Begin
 Node
 Pointer
 Base Pointer
Tx End

Failure Atomicity

 Node

 Pointer

 Barrier

 Base Pointer

Persist Ordering

SFR [Gogte et al]

Atlas [Chakrabarti et al]

ARP [Kolli et al]
Goal: Sweet-spot between programmability and performance

What Primitives for Crash Consistency?

13

Tx Begin
 Node
 Pointer
 Base Pointer
Tx End

Failure Atomicity

What Primitives for Crash Consistency?

14

Tx Begin
 Node
 Pointer
 Base Pointer
Tx End

Failure Atomicity

Programmability

What Primitives for Crash Consistency?

15

Tx Begin
 Node
 Pointer
 Base Pointer
Tx End

Failure Atomicity

Programmability

Performance

What Primitives for Crash Consistency?

16

Persist ordering

 Node

 Pointer

 Barrier

 Base Pointer

What Primitives for Crash Consistency?

17

Persist ordering

 Node

 Pointer

 Barrier

 Base Pointer

Programmability

What Primitives for Crash Consistency?

18

Persist ordering

 Node

 Pointer

 Barrier

 Base Pointer

Programmability

Performance

What Primitives for Crash Consistency?

19

Persist ordering

 Node

 Pointer

 Barrier

 Base Pointer

Programmability

Performance

ARP one-sided barriers
[Kolli et al.]

Acquire-Release Persistency (ARP)

T1

A1 =

A1 =

A1 =

T2

Rel: (flag =1)

More writes

More writes

B1 =

B2 =

B3 =

Acq: (= flag)

W3:

W4:

W1:

W2:

20

Acquire-Release Persistency (ARP)

T0

A1 =

A1 =

A1 =

T1

Rel: (flag =1)

More writes

More writes

B1 =

B2 =

B3 =

Acq: (= flag)

W3:

W4:

W1:

W2:

p

21

W1 → W4

(but not W1 → W2
Or W3 → W4)

One-sided barrier

Our View: Atomicity vs Ordering

Atomicity is programmable but ordering important too
(for log-free data structures, LFDs)

22

Our View: Atomicity vs Ordering

Atomicity is programmable but ordering important too
(for log-free data structures, LFDs)

23

LFDs are important use-case for persistent memory
[Izraelevitz ‘17, David ‘18, Belloche ‘18]

Our View: Atomicity vs Ordering

Atomicity is programmable but ordering important too
(for log-free data structures, LFDs)

24

 But ARP is not strong enough for enabling recovery of LFDs!

LFDs are important use-case for persistent memory
[Izraelevitz ‘17, David ‘18, Belloche ‘18]

Multithreaded Log-free Linked List: Thread 1

N1 N2

A1:
Key
Values
Next

N1.Next

 A 1
.N

ex
t

step 1:

25

W1

Multithreaded Log-free Linked List: Thread 1

N1 N2

A1:
Key
Values
Next

N1.Next

*CAS : Compare-and-swap is a read-modify-write (RMW) instruction.

 A 1
.N

ex
t

step 1:

N1 N2

A1:
Key
Values
Next

Rel: *CAS (N1.Next)

A 1
.Next

step 2:

26

W1

Multithreaded Log-free Linked List: Thread 1

N1 N2

A1:
Key
Values
Next

N1.Next

 A 1
.N

ex
t

step 1:

N1 N2

A1:
Key
Values
Next

Rel: *CAS (N1.Next)

A 1
.Next

step 2:

N1 N2

Rel

Inconsistent PM

27

W1

Multithreaded Log-free Linked List: Thread 1

N1 N2

A1:
Key
Values
Next

N1.Next

 A 1
.N

ex
t

step 1:

N1 N2

A1:
Key
Values
Next

Rel: *CAS (N1.Next)

A 1
.Next

step 2:

28

W1

W1 → Rel

Multithreaded Log-free Linked List: Thread 2

29

N1 N2A1

Rel W1

B2

step 3:

Acq

Multithreaded Log-free Linked List: Thread 2

30

N1 N2A1

Rel W1

B2

step 3:

N1 N2A1

W1

B2

step 4:

W4

Acq

N1 N2

B2

Inconsistent PM

W4

Multithreaded Log-free Linked List: Thread 2

31

N1 N2A1

Rel W1

B2

step 3 (Thread 2):

N1 N2A1

W1

B2

step 4 (Thread 2):

W4

Acq

Multithreaded Log-free Linked List: Thread 2

32

N1 N2A1

Rel W1

B2

step 3 (Thread 2):

N1 N2A1

W1

B2

step 4 (Thread 2):

W4

Acq

W1 → W4

Persistent Orderings for Recovery

T2T1

A1.Key =

A1.Values =

A1.Next =

W1:

Rel : CAS (N1.Next)

More writesW2:

More writes

Acq: Rd (N1.Next)

W3:

33

B2.Key =

B2.Values =

B2.Next =
W4:

…...

Persistent Orderings for Recovery

T2T1

A1.Key =

A1.Values =

A1.Next =

W1:

Rel : CAS (N1.Next)

More writesW2:

More writes

Acq: Rd (N1.Next)

W3:

34

B2.Key =

B2.Values =

B2.Next =
W4:

…...

W1 → Rel → W4

Acquire-Release Persistency (ARP) is not strong enough!

T1

A1.Key =

A1.Values =

A1.Next =

T2

More writes

B2.Key =

B2.Values =

B2.Next =

Acq: (N1.Next)

W3:

W4:

W1:

p

35

Rel: CAS (N1.Next)

More writesW2:

Acquire-Release Persistency (ARP) is not strong enough!

T1

A1.Key =

A1.Values =

A1.Next =

T2

Rel: CAS (N1.Next)

More writes

More writes

B2.Key =

B2.Values =

B2.Next =

Acq: (N1.Next)

W3:

W4:

W1:

W2:

36

full persist barrier1

2 full persist barrier

p

p

p

Acquire-Release Persistency (ARP) is not strong enough!

T1

A1.Key =

A1.Values =

A1.Next =

T2

Rel: CAS (N1.Next)

More writes

More writes

B2.Key =

B2.Values =

B2.Next =

Acq: (N1.Next)

W3:

W4:

W1:

W2:

37

full persist barrier1

2 full persist barrier

p

p

p

Full barriers annul the performance benefits of ARP!

Release Persistency

T1

A1.Key =

A1.Values =

A1.Next =

T2

Rel: CAS (N1.Next)

More writes

More writes

B2.Key =

B2.Values =

B2.Next =

Acq: (N1.Next)

W3:

W4:

W1:

W2:

hb

hb

hb

38

Release Persistency

T1

A1.Key =

A1.Values =

A1.Next =

T2

Rel: CAS (N1.Next)

More writes

More writes

B2.Key =

B2.Values =

B2.Next =

Acq: (N1.Next)

W3:

W4:

W1:

W2:

hb

hb

hb

p

p

p

39

Release Persistency

T1

A1.Key =

A1.Values =

A1.Next =

T2

Rel: CAS (N1.Next)

More writes

More writes

B2.Key =

B2.Values =

B2.Next =

Acq: (N1.Next)

W3:

W4:

W1:

W2:

hb

hb

hb

p

p

p

40
W1 → Rel → W4

Release Persistency

T1

A1.Key =

A1.Values =

A1.Next =

T2

Rel: CAS (N1.Next)

More writes

More writes

B2.Key =

B2.Values =

B2.Next =

Acq: (N1.Next)

W3:

W4:

W1:

W2:

hb

hb

hb

p

p

p

41
W1 → Rel → W4

Persist ordering mirrors consistency happens-before ordering

(sufficient for LFD recoverability [Izraelevitz and Scott ’16])

Release Persistency

T1

A1.Key =

A1.Values =

A1.Next =

T2

Rel: CAS (N1.Next)

More writes

More writes

B2.Key =

B2.Values =

B2.Next =

Acq: (N1.Next)

W3:

W4:

W1:

W2:

hb

hb

hb

p

p

p

42
W1 → Rel → W4

One-sided

 LFDs

How to Enforce RP Efficiently?

● Requirements

○ W1 → Rel → W4

○ But the implementation needs to be buffered

(Suboptimal for W1 to persist when the Rel performs)

43

How to Enforce RP Efficiently?

● Requirements

○ W1 → Rel → W4

○ But the implementation needs to be buffered

(Suboptimal for W1 to persist when the Rel performs)

44

These requirements match a 30-year old protocol for enforcing RC lazily!

Lazy Release Consistency (LRC)

45

● On a release

○ Write to the local cache (no need to propagate writes before the release)

● On an acquire

○ Find matching release and write-back dirty blocks in the releasing processor

Lazy Release Consistency (LRC)

46

● On a release

○ Write to the local cache (no need to propagate writes before the release)

● On an acquire

○ Find matching release and write-back dirty blocks in the releasing processor

Propagate data lazily to enforce RC

Lazy Release Persistency (LRP)

47

● On a release

○ Write to the local cache (no need to persist writes before the release)

● On an acquire

○ Find matching release and persist dirty blocks in the releasing processor

Lazy Release Persistency (LRP)

48

● On a release

○ Write to the local cache (no need to persist writes before the release)

● On an acquire

○ Find matching release and persist dirty blocks in the releasing processor

Persist data lazily to enforce RP

Evaluation

Benchmarks

● SynchroBench LFD suite from [Gramoli ‘15]

Comparison points.
● Strict Barrier (SB)
● Buffered two-sided Barrier (BB) [Joshi ‘15]

Simulation infrastructure

● PRiME simulator
● Processor: 64-core, 2.5 GHz, x86-64 (TSO)
● Caches: L1 (32K), LLC-banked (1MB per bank)
● Coherence: Directory-based MESI
● Interconnection: 2D-Mesh network
● Memory : PCM-NVRAM

49

Execution Time

50

LRP vs SB

● Upto 71% Improvement
● Average of 52%

71%

Execution Time

14%

44%

LRP vs BB [Joshi ‘15]

● Upto 44% Improvement
● Average of 33%

LRP vs SB

● Upto 71% Improvement
● Average of 52%

51

Execution Time

LRP vs BB [Joshi ‘15]

● Upto 44% Improvement
● Average of 33%

LRP vs SB

● Upto 71% Improvement
● Average of 52%

LRP over NO-Persistency

● Only upto 8% overhead

52

Summary

● Crash consistency requires persistency primitives: Ordering or Atomicity?
● Languages should support atomicity but also ordering!
● Why? Log-free data structures can recover without needing atomicity
● State-of-the-art language primitive for ordering ARP is not strong enough for LFDs

Contribution
● Release Persistency a language-level persistency model
● Lazy release persistency (LRP) its microarchitectural implementation
● LRP shows 14%-44% improvement over 5 commonly used LFDs.

53

Backup Slides

54

Execution Time

LRP vs BB [Joshi ‘15]

● Upto 44% Improvement
● Average of 33%

LRP vs SB

● Upto 71% Improvement
● Average of 52%

LRP over NO-Persistency

● Only upto 8% overhead

55

71%

Execution Time

14%

44%

LRP vs BB [Joshi ‘15]

● Upto 44% Improvement
● Average of 33%

LRP vs SB

● Upto 71% Improvement
● Average of 52%

LRP over NO-Persistency

● Only upto 8% overhead

56

Writebacks

LRP vs BB

● ~41% improvement in the
critical path write-backs.

57

Uncached Mode

58

LRP vs BB

● 24%-68% Improvement
● Average 52%

LFD Recovery Guarantees

Null Recovery

Buffered Durable Linearizability (BDL)

Durable Linearizability (DL)

Detectable Execution (DE) Stronger
Guarantees

LRP

59

BDL and DL require
real time ordering

LFD Recovery Guarantees

Null Recovery

Buffered Durable Linearizability (BDL)

Durable Linearizability (DL)

Detectable Execution (DE) Stronger
Guarantees

LRP

60

LRP’s null recovery is easy to be extended into stronger guarantees
without real time ordering

BDL and DL require
real time ordering

Epoch ID

e0

wr0,0

wr0,m

e1

rel:wr1,0

wr1,n

A

B

full persist barrier

● No coalescing and reordering across barriers
● Flushing data eagerly (all previous epochs)

One-Sided Release Barrier

Full Barrier

A

B

Epoch ID

e0

rel: wr0,0

wr0,m

e1

rel: wr1,0

wr1,n

one-sided barrier

● Coalescing and reordering across barriers
● Flushing data lazily

One-Sided

61

more epochs

Lazy
writebacks

Buffered Epoch Persistency (BEP):
Rule 1: writes from different epochs can be buffered.
Rule 2: writes persist in their epoch order.

Persist Barriers have strong semantics:
➢ No reordering across barriers
➢ Persistency overhead is significant!

Implementation artifacts:

➢ Cache-line eviction/writeback conflicts
➢ Writing to the same cacheline conflicts

Buffered Epoch Persistency
Epoch

e0

wr0

wrM

e1

wr0

wrN

pbarrier

ei

wr0

wrP

pbarrier

Persist conflicts

P
er

si
st

 in
 e

po
ch

 o
rd

er

e0

ei-1

Eagerly flushing cache-lines in the critical path

Lazy-writebacks

Epoch

e0

rel: wr0,0

wr0,m

e1

rel: wr1,0

wr1,n

release pbarrier

RP

Release Persistency
Epoch

e0

wr0,0

wr0,m

e1

rel: wr1,0

wr1,n

Full pbarrier

Epoch

e0

wr0,0

acq: wr0,m

e1

wr1,0

wr1,n

acquire pbarrier

A

B

CLA

CLB

A

B

A

B

A BCLA

CLB

Coalesce (no-conflicts)

*RP avoids EOP conflicts

BEP

63

LRP-Examples
Epoch

e0

rel: CL0,0

CL0,m

e1

rel: CL1,0

CL1,n

release pbarrier

ei

rel: CLi,0

CLi,j

release pbarrier

rel: CL1,0

CL0,m

rel: CL0,0

CL1,n

release pbarrier
rel: CLi,0

CLi,j

release pbarrier
reorder

➢ Coalescing
➢ Lazy Evictions
➢ Lazy Writebacks

Lazy-region

*LRP one-sided barriers aggressively reorder writes, persisting stores lazily 64

Hardware Extensions

65

Release Example

66

Epoch ID

e0

wr0,0

acq:wr0,m

e1

wr1,0

wr1,n

A

B

full persist barrier

● No coalescing and reordering across barriers
● Flushing data eagerly (all previous epochs)

Full Barrier

A

B

Epoch ID

e0

rel: wr0,0

acq:wr0,m

e1

 wr1,0

wr1,n

one-sided barrier

● Coalescing and reordering across barriers
● Flushing data lazily

One-Sided Barrier

67

One-Sided Acquire Barrier

One-Sided Acquire Barrier

● Acquire can be enforced very easily than the Release barriers.
● If a read is annotated with an Acquire, no additional action is required (can easily be

enforced with the min epoch Id mentioned in the Release).
● If a RMW is annotated with Acquire, write inside RMW is persisted first.
● Regular Write can never be annotated with acquire.

68

All Cases Handled

● Wr → Wr : Write after write is no issue.
● Rel → Wr : Write after release can be coalesced. unlimitedly.
● Wr → Rel : Release after write can be coalesces only if min epoch id is equal to rel

epoch id -1.
● Rel → Rel : Release after release to a cacheline can be coalesced only if they are

consecutive releases (epoch id+1). RET table is used, but can be optimized
with/without the RET table as well.

● Different consistency guarantees: RC-SC or RC-PC.

69

A

B

Epoch ID

e1

rel: wr0,0

wr0,m

e2

rel: wr1,0

wr1,n

one-sided barrier

LRP One-Sided Release Barrier

*min epoch Id: First epoch that writes the cache-line. 70

1

● Release barrier is flagged using a bit1

Key Points

● Cache-lines store only min epoch Id2

2 ● “Pending-persist” counter to track write-backs3

3

4
● Persist engine to enforce the RC semantics4

Crash Consistency

● Content of memory after a crash needs to be consistent

W1: X→1

W2: Y→1

R1: Y ← 1

R2: X ← 0

T0 TN

Inconsistent!! Consistent

Atomic regions

W1: X→1

W2: Y→1

R1: Y ← 1

R2: X ← 1

T0 TN

Failure-atomicity
(atomic durability)

Consistent

W1: X→1

W2: Y→1

R1: Y ← 1

R2: X ← 1

T0 TN

Ordering

Persist Barriers

Transaction + Logging clwb + sfence
71

Crash Consistency

● Content of memory after a crash needs to be consistent

W1: X→1

W2: Y→1

R1: Y ← 1

R2: X ← 0

T0 TN

Inconsistent!! Consistent

Atomic regions

W1: X→1

W2: Y→1

R1: Y ← 1

R2: X ← 1

T0 TN

Failure-atomicity
(atomic durability)

Consistent

W1: X→1

W2: Y→1

R1: Y ← 1

R2: X ← 1

T0 TN

Ordering

Persist Barriers

Transaction + Logging clwb + sfence
72

Should language expose ordering? or atomicity?

